1
4

Final Document

[image: image3.png]M.IR. " 2
“Moile Intefligence Rohot

Client: Facilities Management

Dr. Jerry Weinberg and Dr. George Engel

Southern Illinois University Edwardsville

Version 1.0
12/12/05

Group Members:

Jason Abbett

Devon Berry

Table of Contents

61.
Requirements Analysis Document

1.1.
Introduction
6
1.1.1.
Purpose of the system
6
1.1.2.
Scope of the System
6
1.1.3.
Objectives and Success Criteria of the Project
6
1.1.4.
Definitions, Acronyms, and Abbreviations
7
1.1.5.
References
7
1.1.6.
Overview
7
1.2.
Current System
8
1.3.
Proposed System
8
1.3.1.
Overview
8
1.3.2.
Functional requirements
8
1.3.3.
Nonfunctional Requirements
8
1.3.3.1.
User Interface and Human Factors
8
1.3.3.2.
Documentation
9
1.3.3.3.
Hardware Consideration
9
1.3.3.4.
Performance Characteristics
9
1.3.3.5.
Error Handling and Extreme Conditions
9
1.3.3.6.
Quality Issues
10
1.3.3.7.
System Modifications
10
1.3.3.8.
Physical Environment
10
1.3.3.9.
Security Issues
10
1.3.3.10.
Resource Issues
10
1.3.4.
Pseudo Requirements
11
1.3.5.
System Models
11
1.3.5.1.
Scenarios
11
1.3.5.2.
Object Model
12
1.3.5.2.1.
Data Dictionary
12
1.3.5.2.2.
Class Diagrams
13
1.3.5.3.
Dynamic Models
14
2.
Design Document
15
2.1.
Introduction
15
2.1.1.
Purpose of the System
15
2.1.2.
Design Goals
15
2.1.2.1.
Hardware Design Goals
15
2.1.2.2.
Software Design Goals
15
2.2.
Hardware Architecture
16
2.2.1.
Frame
16
2.2.2.
Servos
16
2.2.3.
Wheels
16
2.2.3.1.
Drive
16
2.2.3.2.
Stabilization
16
2.2.4.
Sensors
17
2.2.4.1.
Sonar
17
2.2.4.2.
Light
17
2.2.4.3.
CMU cam
17
2.2.5.
Mouse
18
2.2.6.
Compass
18
2.2.7.
Controller
18
2.2.7.1.
Outputs
18
2.2.7.2.
Inputs
19
2.2.8.
Manipulator
19
2.3.
Software Architecture
20
2.3.1.
Overview
20
2.3.2.
Subsystems
20
2.3.2.1.
Localization
20
2.3.2.2.
Motor Control/Operation
21
2.3.2.3.
Camera Control/Operation
21
2.3.2.4.
Claw Operation
21
2.3.2.5.
Sonar Operation
22
2.3.2.6.
Light Sensor
22
2.3.3.
Classes
22
2.3.3.1.
Mouse
22
2.3.3.2.
Motors
23
2.3.3.3.
Camera
23
2.3.3.4.
Claw
24
2.3.3.5.
Sonar
24
2.3.3.6.
Light Sensors
24
2.3.4.
Modules
25
2.3.4.1.
Main
25
2.3.4.2.
Collision Correction
25
2.3.4.3.
Grab Can
25
2.4.
Software Applications
26
2.5.
Course
27
3.
Plan Document
28
3.1.
Overview
28
3.1.1.
Objective
28
3.1.2.
Discussion
28
3.1.3.
Detail
29
3.2.
Process Plan
31
3.2.1.
Specification
31
3.2.2.
Programming
32
3.2.2.1.
Testing
32
3.2.3.
Delivery
33
3.3.
Organization Plan
33
3.3.1.
Analysis
33
3.3.2.
Design
33
3.3.2.1.
Hardware
33
3.3.2.2.
Software
34
3.3.3.
Programming
34
3.3.4.
Testing
34
3.3.5.
Staff
35
3.4.
Test Plan
35
3.4.1.
Class Tests
35
3.4.1.1.
Objectives
35
3.4.1.2.
Procedures
35
3.4.2.
Integration Tests
36
3.4.2.1.
Objectives
36
3.4.2.2.
Procedures
37
3.4.3.
Track test
37
3.4.3.1.
Objectives
37
3.4.3.2.
Procedures
38
3.5.
Change Management Plan
38
3.5.1.
Baselines
38
3.5.2.
Proposing a Change
38
3.5.3.
Investigating A Proposal
38
3.5.4.
Risks Requiring Project Changes
39
3.5.5.
Required Changes to Correct Risks
40
3.5.6.
Implementing a Change
40
3.6.
Documentation Plan
41
3.6.1.
Objective
41
3.6.2.
Discussion
41
3.6.3.
Detail
41
3.7.
Training Plan
42
3.7.1.
Objective
42
3.7.2.
Discussion
42
3.7.3.
Detail
42
3.7.3.1.
Internal Training
42
3.7.3.2.
External Training
42
3.8.
Review and Reporting Plan
43
3.8.1.
Objective
43
3.8.2.
Discussion
43
3.8.3.
Detail
43
3.8.3.1.
Reviews
43
3.8.3.2.
Reports
43
3.8.3.2.1.
Time Logs
43
3.8.3.2.2.
Status Reports
44
3.9.
Installation and Operation Plan
44
3.9.1.
Objective
44
3.9.2.
Discussion
44
3.9.3.
Detail
44
3.9.3.1.
Installation
44
3.9.3.2.
Operation
44
3.10.
Resources and Deliverables Plan
45
3.10.1.
Objective
45
3.10.2.
Discussion
45
3.10.3.
Detail
45
3.10.3.1.
Manpower
45
3.10.3.2.
Computer Resources
45
3.10.3.3.
Other Resources
45
3.10.3.4.
Required Software
46
3.10.3.4.1.
Cygwin
46
3.10.3.4.2.
Xport Development Kit
46
3.10.3.4.3.
Xport eCos
46
3.11.
Project Status
47
3.11.1.
Objective
47
3.11.2.
Discussion
47
3.11.3.
Detail
47
3.11.3.1.
Software
47
3.11.3.2.
Hardware
48
4.
Member Contributions
48

List of Figures

Figure 1……………………………………………………………………...13
Figure 2……………………………………………………………………..14
Figure 3……………………………………………………………………..20

Figure 4……………………………………………………………………..27
Figure 5……………………………………………………………………..29
Figure 6……………………………………………………………………..30
Figure 7……………………………………………………………………..31
1. Requirements Analysis Document

1.1. Introduction

1.1.1. Purpose of the system

The clients, Dr. Weinberg and Dr. Engel, require that we construct a robot to compete in the IEEE region 5 2006 robot tournament. The tournament will consist of a replica warehouse of 8 rooms. Four of the rooms are incoming rooms and the remaining four are outgoing rooms. There will be exactly one can placed inside of each outgoing room. Each can will be painted a different color. The outgoing rooms will correspond to one of the four colors. The robot will have to navigate the course without hitting any walls and make its way to an incoming room. Once in the room the robot has to grab the can and take it to the corresponding outgoing room. The time limit for the course is set at 3 minutes. The robot will have to place as many cans as possible within that time frame.

1.1.2. Scope of the System

The scope of the system is to construct a robot that will successfully complete the course. The robot should be able to identify cans from other objects and to detect the color of the can. Also the robot should be aware of its surroundings and be able to avoid walls and stay within the boundaries of the course.

1.1.3. Objectives and Success Criteria of the Project

The objective of the project is to design and implement a robot which will complete in the IEEE region 5 robot competition. The robot should be autonomous and be capable of navigating around the warehouse. The robot will be able to avoid walls and know where it has been. The robot can recognize the colored cans in the course and be able to place the cans in the correct room. The project will be successful if the robot runs the course is allowed to compete in the tournament.

1.1.4. Definitions, Acronyms, and Abbreviations

Dead Reckoning- Allows the robot to calculate distances from place to place.

Gateways- opportunity for the robot to change overall direction of navigation, (i.e. intersection of 2 hallways).

IC - Interactive C, programming language used specifically for robots.

Landmarks- Objects the robot can recognize to realize position (i.e. doors, hallways).

SDK - Software Development Kit, these are software bundles that allows programmers to develop software for a specific system.

XRC - Xport robot controller, this will be the processor for the robot and what our team will be doing the programming on.
1.1.5. References

http://www.2006ieeer5conference.com/. This is a link to the rules for the competition.

http://sourceforge.net/project/showfiles.php?group_id=62379&package_id=121491. This is the link to download xport 2.0 SDK and provides many source code examples. The SDK package will allow us to program the XRC.

A I Robotics, Robin R. Murphy, This is the Robotics book that Dr. Weinberg leant to us. The chapters on navigation provided good insight to robot movement.

1.1.6. Overview

The team is required to design and build a mobile robot which will navigate a course at the IEEE Region 5 2006 robotics competition. The robot will have to qualify by completing the course in a successful time period.

1.2. Current System

The current system is a robot that competed in the competition last year. The robot used the XRC robot controller. Also the robot was constructed out of legos and was not very durable. Legos can easily fall apart which happened at the competition last year. The robot was programmed to use dead reckoning. This implementation required many precise calculations and very precise equipment. The robot must know where it is at all times and be able to calculate distances between objects. The XRC robot controller compiles with the cygwin bash shell. A serial port cable is used to connect the XRC to a computer, then the code is uploaded from the computer to the XRC.

1.3. Proposed System

1.3.1. Overview

The main objective of the robot is to compete in the IEEE robot competition and complete the course. To succeed, the robot will have to navigate the course and place as many of the colored cans into their correct rooms as possible.

1.3.2. Functional requirements

The functional requirements will require the robot to navigate through the replica warehouse. The robot must be able to avoid walls and stay within the boundaries of the warehouse. Also the robot must be able to recognize cans and their color. Then after the robot has retrieved the can it will carry it to the correct room of the same color. The robot will need to detect colors and remember where it has been. When the robot finds a can it must remember it does not need to go to that room again. The robot must have the ability to operate without outside intervention.

1.3.3. Nonfunctional Requirements
1.3.3.1. User Interface and Human Factors

The robot must be autonomous so their will not be a user interface. The robot must to make decisions based on information it receives from its sensors. For example when the robot passes an opening to a room it will need to make a decision on whether or not to enter the room. The robot will make this decision based upon its internal program and data from its sensors.

1.3.3.2. Documentation

Our clients require that we provide the proper documentation for this project. The proper documentation will provide future teams with valuable information. All of our documents for the project will be placed on the sr. projects webpage. The documentation from every team member will be placed on Michael Hall's server.

1.3.3.3. Hardware Consideration

The XRC robot controller is the platform on which we will be programming. This hardware was selected because it is easier to make it interact with all the other hardware (e.g. sensors, cameras.) Programming will become a bit more difficult. W e will have to program at more of a hardware level for some of the functions such as color reorganization. In the end it will make the robot that much more precise than the alternative and we will learn a great deal more.

1.3.3.4. Performance Characteristics

The robot should be able to complete as much of the course as possible within the given time. There is a three minute time limit for the course. In order to do this the robot will need to use an algorithm to find the quickest path. Taking the quickest paths from room to room will minimize the time. Also the robot should not fall apart as it did in the last competition. To avoid this we are using more reliable materials, such as plastic and metal. These material do not fall apart easily.

1.3.3.5. Error Handling and Extreme Conditions

There are two types of possible errors, hardware errors and software errors. Software errors include any error that occurs within the execution of the artificial intelligence program, such as, incorrect navigation algorithms, improper use of instrument readings, infinite loops, and lock-ups. The robot shall not be able to handle these, should they occur, thus the program must be tested thoroughly before the competition. Hardware errors include errors that occur in hardware, such as, imprecise movements, tires slipping, bad instrument readings, or structure disassembly. The robot should be able to handle these, otherwise if it cannot, it will be likely to have one error and mess up the entire round. Since the conditions of the course are precisely defined, unexpected or otherwise extreme conditions are less likely.

1.3.3.6. Quality Issues

The robot should be able to complete the objective in a short time. If it does not, it will impact our placing in the IEEE competition. It must be able to leave the starting zone within thirty seconds and it should be quick enough to relocate the containers to their proper zones in less time then the other competitors’ robots.

1.3.3.7. System Modifications

After the competition, this robot shall have to be modified if it is to be used in any other tasks except the exact environment defined by the IEEE 2006 tournament rules. Skilled engineers shall be required to modify the robot for other tasks.

1.3.3.8. Physical Environment

The robot’s environment is the physical environment. It should be capable of interacting with it successfully without getting stuck or damaged. Its physical environment is defined as a well-lit indoor area, so it does not need to be protected from the weather or natural disasters except, of course, before the competition. It shall be an eight square foot area with one inch molding strips for barriers. It shall be composed of eight, two foot by two and a half foot rooms all connected by a three foot wide hallway in the middle.

1.3.3.9. Security Issues

The robot can be easily stolen by anyone provided it is not in a safe place. To protect it, it shall be locked in the VSLI lab. Though, it is still not protected from anyone who has access to the VSLI lab. It could be stored in someplace only the team has access to, such as a combination locker, but this seems unnecessary as there is more expensive equipment stored in the VSLI lab that would probably be stolen first. Also, anyone who has access to the VSLI lab would have a lot to lose from being caught stealing. If the robot does get stolen, the theft shall be reported to the authorities as soon as it is discovered.

1.3.3.10. Resource Issues
The robot is owned by SIUE. The parts used on the robot will likely also be owned by SIUE, with exception, perhaps, to the parts we purchase ourselves. The current cost of the robot is around $1200 dollars. As far as the ownership of the code, it shall be public domain, since several pieces will likely be used from other sources.

1.3.4. Pseudo Requirements
The requirements for the robot are strictly defined by the tournament rules. It must be small enough to fit in the course without having to drive over walls, distinguish and move cans from incoming rooms to their respective outgoing rooms, avoid walls, avoid accidentally pushing workers, and finish as quickly as possible. It must have a drive system for motion, a navigation sensor array to move from one room to another, a sensing element to differentiate between different colored containers, a manipulator to handle the containers, and a processor with software to coordinate all of these elements. Anything deemed unsafe about the robot by the judges will disqualify it.
1.3.5. System Models

1.3.5.1. Scenarios

Scenario name:

IEEE Competition

Participating actor instances

Robot

Flow of events

1. Robot is started in “Outgoing Room 1.”

2. It navigates to the nearest “Incoming” room.

3. It scans the room for containers.

4. If it finds a container, it identifies it, picks it up, and takes it to its respective “Outgoing Room.”

5. Then it heads to the remaining nearest “Incoming” room and repeats from step three, starting by scanning for containers.
Exit condition:
All containers have been moved to their respective outgoing rooms or three minutes have elapsed.

Special requirements:

IEEE Competition Environment

1.3.5.2. Object Model

1.3.5.2.1. Data Dictionary
	Artificial Intelligence
	Program which allows the robot to perform tasks which are normally performed by “intelligent” beings.

	Containers
	Cans which are colored red, blue, green, or yellow and contain which contain ballast at the bottom.

	Manipulator
	Device the robot uses to interact with its environment.

	Motor
	Device that allows robot to move itself.

	Navigation
	The ability for the robot to know where it is and where it is going.

	Processor
	Device that allows robot to use programs.

	Rooms
	Two feet by two and a half feet areas which are surrounded on three sides by walls.

	Sensor
	Device that allow robot to detect its environment.

	Servos
	Device that allows robot to rotate its parts.

	Walls
	One inch square wooden molding strips.

	Warehouse
	An eight feet square area in which there are eight rooms and a three feet wide hallway.

	Workers
	Barbie dolls which are covered in red, blue, green, or yellow cover-alls and are attached to a base for stability.

1.3.5.2.2. Class Diagrams

Figure 1: Function Hierarchy

[image: image4.jpg]— Walls — Path Lines

[image: image5.wmf]B

u

i

l

d

p

r

o

t

o

t

y

p

e

s

y

s

t

e

m

D

e

v

e

l

o

p

a

b

s

t

r

a

c

t

s

p

e

c

i

f

i

c

a

t

i

o

n

U

s

e

p

r

o

t

o

t

y

p

e

s

y

s

t

e

m

D

e

l

i

v

e

r

s

y

s

t

e

m

S

y

s

t

e

m

a

d

e

q

u

a

t

e

?

Y

E

S

N

[image: image6.wmf]B

u

i

l

d

p

r

o

t

o

t

y

p

e

s

y

s

t

e

m

D

e

v

e

l

o

p

a

b

s

t

r

a

c

t

s

p

e

c

i

f

i

c

a

t

i

o

n

U

s

e

p

r

o

t

o

t

y

p

e

s

y

s

t

e

m

D

e

l

i

v

e

r

s

y

s

t

e

m

S

y

s

t

e

m

a

d

e

q

u

a

t

e

?

Y

E

S

N

[image: image7.emf]ID Task Name Start Finish Duration

2006

Feb Apr Jan Mar

1 30d 2/7/2006 1/9/2006 IO Module Implementation

16d 3/9/2006 2/22/2006 Object Identification

9 40d 3/19/2006 2/8/2006 AI Module Implementation

4d 2/11/2006 2/8/2006 Sensor Calibration

2d 1/10/2006 1/9/2006 Motors

4d 4/10/2006 4/7/2006 IEEE Tournament (San Antonio, TX)

3d 1/31/2006 1/29/2006 Sonar

10d 1/26/2006 1/17/2006 CMU Camera

4d 2/7/2006 2/4/2006 Mouse

6d 1/16/2006 1/11/2006 Servos / Manipulator

6d 4/6/2006 4/1/2006 Finalize for Tournament

3d 2/3/2006 2/1/2006 Compass

2d 1/28/2006 1/27/2006 Light Sensors

10d 2/21/2006 2/12/2006 Main / Line Following

14 81d 3/30/2006 1/9/2006 Testing

10d 3/19/2006 3/10/2006 Manipulator Control

25d 5/5/2006 4/11/2006 Manuals, Documents, etc.

16

15

17

2

3

4

5

6

7

8

11

13

10

12

This diagram shows the relationship between the various functions that shall be used when programming the robot. The solid-line arrows indicate functions that are called by other functions under normal circumstances. The dashed-line arrows indicate functions that are not normally called, but can be under emergency conditions. The function at the end, where the arrow is pointing, is the function that is called. In a standard run, main() shall call locate(), which shall call grab(), which shall call exit(), which shall return back to main(). Then main() shall call drop(), which shall call exit(). Then the cycle shall repeat with main() calling locate() again and so on. The cycle shall repeat three more times and then the objective shall be complete, so the program will terminate. You may note that recover() is not called during this run. Since recover() is meant for emergencies only, it is not expected to be called under normal circumstances. It is only provided to prevent errors in hardware. If the light sensors fail, it is used to get the robot back on track. It is called anytime the robot is not over either a black line or a black circle. During a run, the robot is always supposed to be over a black line or a black circle. This function shall help keep that to be true.

1.3.5.3. Dynamic Models

Figure 2: Warehouse Layout

	A
	
	1

	B
	
	2

	C
	
	3

	D
	
	4

Rooms A – D are incoming rooms, containers will be picked up from these rooms. Containers shall be distributed randomly to these rooms, though only one container per room. Rooms 1 – 4 are outgoing rooms, containers will be placed in these rooms. Each outgoing room has a specific color that must be returned to it. Red must be returned to room 1, blue to room 2, green to room 3, and yellow to room 4. To navigate, the robot will always start by going from room 1 to room A. Then, it will take the container to its respective outgoing room. Then it will choose the closest incoming room that it has not been to yet. If there are two incoming rooms which are the same distance from the robot, it will choose the one which is closest to the most outgoing rooms. Then it will repeat this procedure until it has been to all the rooms and thus moved all the containers. For example, first the robot moves from 1 to A. It identifies a red can, which it returns to 1. Since it has been to A already, it moves to the next nearest incoming room, B. There it finds a yellow can, which it returns to 4. From there, it moves to D where it finds a green can. It return this to 3. Then it heads to C and finds a blue can, which it returns to 2. Since it has been to all incoming rooms, it stops.

2. Design Document

2.1. Introduction

2.1.1. Purpose of the System

The purpose of this system is to design a robot to compete in the 2006 IEEE Region 5 robotics competition. The system has two main parts, the robot hardware design and the robots software design. The competition consists of mobile robot driving from rooms 1-4 to rooms A-D transporting a soda can. Walls can not be touched or traveled over. Points will be given to the robot with the most cans transported from rooms 1-4 to room A-D.

2.1.2. Design Goals

2.1.2.1. Hardware Design Goals

The engineering team will design a robot that will be quick and precise. It must be able to sense its environment. It must be able to lift and move soda cans accurately. It must be able to relocate itself from one place to another. Finally, it must be able to do all this quickly.

2.1.2.2. Software Design Goals

The software must be multithreaded to allow multi sensor readings, and also allow certain sensors to drive the motors. The software shall also have the capability of knowing where the robot is, and also knowing where the objects are.

2.2. Hardware Architecture

2.2.1. Frame

The frame of the robot will be the Lynx Motion “4WD 1” chassis. It will be around 11 inches wide, 10 inches long, and 12 inches high. It will have four motors, one manipulator (see sec. 2.8), one to three sonar sensors, three light sensors, and a camera.

2.2.2. Servos

Servos are mechanisms that allow objects to rotate. Servos are used in various places on the robot. Most of them are used to allow the manipulator arm to move. One will also be used to allow the camera to pan and another will be used to allow the manipulator to grip objects.

2.2.3. Wheels

2.2.3.1. Drive

The four motors are located one behind each wheel. The power can be adjusted on each motor to increase or decrease the speed of the wheel it controls. The control for the power of the motors on each side will be tied together so that it can be driven like a tank. (Control the power of the right and left motors to turn, instead of turning the wheels to turn.) Thus, it will be able to turn in place, without moving forward or backward. It will be able to move forward and backward at different speeds. It will also be able to turn left and right at different speeds.

2.2.3.2. Stabilization

The motors and wheels will provide most of the stability, since they are heavy and will be on the bottom. Extra ballast may be added if the robot appears to be unstable. (This is especially important to allow the mouse to read properly.)

2.2.4. Sensors

2.2.4.1. Sonar

The sonar sensors shall be used to detect the distance objects and walls are from the robot. They will be placed in the middle of the front, and perhaps sides, of the robot. The front sonar sensor will be especially important, since its purpose will be to aid the manipulator in grabbing and lifting cans. All the sonar sensors will aid navigation by helping detect the distance of walls and Barbie dolls.

2.2.4.2. Light

The three light sensors shall be used to detect and follow the navigation lines placed on the floor of the warehouse. They will be placed on the back of the robot, since the front is somewhat crowded with the sonar and camera. The three light sensors will be arranged so that one will be directly over the line and the other two will be on either side of the line. When the middle sensor doesn’t detect the line, the robot will keep moving until either the left or right light sensors detect it. In this case, it will turn until the middle sensor detects the line again. This process can be interrupted if the robot approaches objects or walls, so that it can avoid them.

2.2.4.3. CMU cam

The camera will be used to locate cans and Barbie dolls. It will also be able to identify whether an object is a can or a Barbie doll, and identify its color. The camera will be placed on the front of the robot. It will be attached to a servo, which will allow it to pan left or right about 90 degrees on each side. This will give our robot a good idea what objects are in front of it.

2.2.5. Mouse

The optical mouse will be used in conjunction with the compass for navigational aid. It will tell the robot how far it has moved forwards and backwards. It will be used as a secondary form of navigation. If the primary (line following) fails, it will be used to try to get itself back on track. It will be located on the bottom of the robot, so it can detect the movement of the surface below the robot. It will be held down to the surface by a spring, or something similar, so that it gets good readings, even if the robot bounces around a little.

2.2.6. Compass

The electric compass will be used in conjunction with the mouse for navigational aid. It will tell the robot which direction it is facing. It will be used as a secondary form of navigation. If the primary (line following) fails, it will be used to try to get itself back on track. It will be located on the top of the robot, so that it will be far enough away from the motors to not get electromagnetic interference.

2.2.7. Controller

The robot will be controlled by the Xport Robot Controller. It consists of a microcontroller and Gameboy Advance. The Gameboy Advance will act as a debugging interface, memory, and a processor. The microcontroller will obtain electrical signals from the sensors, convert these signals to values that are easy to understand, and send them to the Gameboy Advance. Our artificial intelligence program will use these values and send back orders to move either the motors or manipulator. The microcontroller will receive these orders, convert them into electric signals, and send them to the motors and manipulator.

2.2.7.1. Outputs

1. Left motor speed

2. Right motor speed

3. Manipulator position

4. Claw position

5. Camera position

2.2.7.2. Inputs

1. Sonar Sensors

2. Mouse

3. Compass

4. Light Sensors

5. Camera

2.2.8. Manipulator

The manipulator will be used to lift and carry the cans. The manipulator will be placed on the top of the robot and will be composed of an arm with a claw attached to the end. The arm will be composed of four servos, which will allow it a wide range of motion. The claw will contain one servo to allow it to grip objects and to release objects. It will be able to grip and lift soda cans, which are located up to 8 inches away from the robot’s front or sides.

2.3. Software Architecture

2.3.1. Overview
Figure 3: Evolutionary Prototyping Model

For this project we have decided that the evolutionary prototyping

model is the most appropriate lifecycle. This model is flexible and

supports requirement changes. The engineering team changes

pieces of hardware frequently and this model supports these

changes. This model also allows for us to create a working

prototype. If this prototype is not adequate then we can build a

new system prototype and continue to repeat the process until the

system is adequate. This will allow us to continually test our code

and correct any problems the system might have.
2.3.2. Subsystems

2.3.2.1. Localization

The localization relies on a digital mouse. The mouse sends a signal to the XRC robot controller. We will use this signal in hexadecimal to find the x and y coordinates. These coordinates will be incremented and decremented accordingly. The mouse will need to be initialized to the robot's starting coordinates. The mouse will connect as an input to the microcontroller.

2.3.2.2. Motor Control/Operation

Integrating where the robot is at and where it needs to be drives the motors at a certain speed. If the robot needs to navigate, the processor will send a hexadecimal signal to the microcontroller telling the drive motor to run. A positive signal will signify forward motion and a negative signal will signify reverse motion. For turns, the turn motor will be turned on positive for right or negative for left.

2.3.2.3. Camera Control/Operation

The camera will send distance, vertical, and horizontal values to registers in the microcontroller. The values depict what the camera is viewing. If the object being viewed is a can, then we will set the motors accordingly. This will be done to move the robot within range of the can.

2.3.2.4. Claw Operation

The claw will close when the microcontroller receives the information that the can is inside the claw. There will be a sensor placed in the middle of the claw. When the sensor is triggered then the robot will shut the claw. The robot will use the sonar and camera to determine when there is a can in the claw. The dimensions of the object in the camera’s view will determine the size of the object. The readings from the sonar will determine the distance from the object. Those two factors will determine when there is an object within range of the claw. Those readings will be read from the registers in the microcontroller. After the claw has the can, the claw will then rise to a certain height and hold the can.

2.3.2.5. Sonar Operation

When the Camera is not able to see the object anymore the sonar will take control and guide the robot. When the sonar is active the microcontroller will read an 8-bit input register. The value in this register will correspond to the sonar reading. This value will let the system know how far away it is from the can. Once a can is within correct range of the robot, a command to close the claw will take place.

2.3.2.6. Light Sensor

There will be three light sensors placed on the back of the robot. The middle sensor will be on the black line and the other two will be on the white floor. Color boundaries will be given to each sensor. The boundaries will determine whether the color will be read as black or white. The robot will read these values and correct itself if it is no longer following the black line.

2.3.3. Classes

Each of the subsystems will have its own class in our code. Because everything will be modular, this will allow for better testing and debugging. Once the classes are created, we can instantiate any class and then use the functions in our code.

2.3.3.1. Mouse

The mouse class will perform the required functions of the mouse. The class will have a get coordinate function. This function will get the coordinates from the mouse and send them to the XRC for use. There will also be a display coordinate function. This function will display the coordinates to the screen of the XRC. This will be used for debugging and testing purposes. There will be two constructors for this class. One will be a default destructor to instantiate the mouse coordinates. The other will allow us to enter an integer number to be used to instantiate the mouse coordinates.

2.3.3.2. Motors

The motor class will provide the required functions of the motors. There will be two constructors for this class. One will be a default which will enable the motors to x80 in hex. This tells the motors not to move. The other constructor will allow us to enter a double which will then instantiate the motors to that value. There will be several functions in the motor class. There will be an enable motors function. This function will allow the motors to be sent signals and begin operating. There will be a disable motors function. This function will disable the motors and will not allow them to receive any signals. Set left/right motor. These functions will send the given signal to the motor, which will then cause the wheels to rotate.

2.3.3.3. Camera

The camera class will provide the required functions of the camera. The camera will have a default constructor to initialize everything to zero. The class will have two functions. The first will be get picture. This will have the camera get a picture of whatever is in front of it. The second function will be display picture. This function will display the picture on the screen of the XRC robot controller.

2.3.3.4. Claw

The claw class will provide all of the required functions of the claw. The class will have a default constructor which will initialize everything to zero. The claw will have many functions. The first function will be enable/disable. These functions will either allow the claw to receive signals or not allow it to receive signals. There will also be move functions. These functions will allow the arm to move in any direction up to the limitations of the hardware. Upper and lower bounds will be set to prevent the arm from moving to far. The angle of the arm will be calculated and if the angle reaches one of the bounds then the arm and claw will not proceed any further.

2.3.3.5. Sonar

The sonar class will provide the required functions needed to operate the sonar. The sonar will have a default constructor to initialize everything to zero. The sonar class will have two functions. The first function will be trigger. This will trigger the sonar and return the results in hexadecimal. The second function will be display trigger. This function will display the results to the screen of the XRC robot controller. This will be used for testing and debugging purposes.

2.3.3.6. Light Sensors

The light sensor class will provide the required functions needed to operate the light sensors. The light sensor class will have a default constructor to initialize everything to zero. This class will have two functions. The first function will be get light. This will return the data signaled by the light sensors in hexadecimal. With this data we will set bounds on what data will constitute black and white. The second function will be display light. This function will display the results to the screen of the XRC robot controller. This will be used for testing and debugging purposes.

2.3.4. Modules

The use of modules will make our code more modular. This will make it easier when debugging our code. When we run into problems we will be able to locate the module which has the problem. Then we will only have to fix that module and not the whole program.

2.3.4.1. Main

The main program will execute the line following code. This code will constantly receive data from the light sensors and make sure that the robot is following the black line. There will be three sensors placed on the bottom of the robot. If the middle is reading data for black and the outside two are reading data for white, then the robot is on the line. If two of the sensors are reading data for white and one sensor is reading data for black then the robot will be programmed to turn and correct itself.

2.3.4.2. Collision Correction

This module will check if a collision has occurred and properly correct itself if one has. The layout of the warehouse is going to be implemented as a grid. We will use a multi-dimensional array as the grid. Walls will be marked in the array using a negative integer value. Using data from the mouse and the array, the robot will know where it is at in the warehouse. By using the array, it will then proceed to find its way back to the black line. If the array is marked as a non-obstructed area then the robot will go in that direction.
2.3.4.3. Grab Can

Once the robot finds a can this module will be executed. In this module the robot will position itself in front of the can. This will be done by obtaining data from the cameras and sonar. Once in front of the can, the robot will use its arm and claw to grab the can. After the robot has successfully obtained the can, the main module will continue execution. The robot will know when it has the can when the sensor in the claw is triggered and the claw is in the closed position.

2.4. Software Applications

Xport 2.0 sdk will be used to compile and run our program code. The sdk includes cygwin bash shell to use as the compiler. The sdk was specifically designed to use with the XRC and cygwin. Our code will be compiled and executed using the Cygwin Bash shell. C++ is the language that will be used to code the system. Once the C++ code is written, the code will be ported to the Xport 2.0 sdk and compiled.

2.5. Course

The course will be made using two pieces of 4’ by 8’ plywood, both of these pieces will be placed together horizontally to make an 8’ by 8’ course. The course will be painted white and the walls on the edges will be 1’’ square wooden molding strips. All black markings on the track will be electrical tape which will allow the robot to follow routes on the course. This course can be easily reproduced and used to test the system. The team is going to build a replica of the course.

Figure 4: Course Layout

[image: image1]
3. Plan Document

3.1. Overview

3.1.1. Objective

The purpose of this project is to qualify and compete in the IEEE region 5 2006 robotics competition. The project plan document will clearly document each stage of the project development and dictate the plan of action for certain situations. The plan will outline all milestones and goals in order to track progress as well as ensure proper completion of each stage within the set deadlines.

3.1.2. Discussion

The project involves creating a robot to compete in the IEEE 2006 robotics competition. Our project’s objectives include, keeping the robot safe and within the regulation requirements of the competition. Also to provide code that will allow the robot to successfully compete in the tournament. Success is based upon the completing of the course in a positive time. Negative time can be acquired by penalties. Our team assumes that the engineers will construct a safe, reliable robot by the end of December.

3.1.3. Detail

The following figures show the schedule of the project. Our team will follow this schedule until the end of the spring 2006 semester.

[image: image2.jpg]» Tk s [— I

I] | o W

= [Gomermmry e [T I CH_]

5 [e crewone e v | v | oaoes N

P o | vnees T —

O s | o o | e—

& [promain P w 0

7 [boson Bt o[oo |]

& [G g Gt o | e | 6]

O) o || W]

0 [rome o Dot | s T -

[ot i Prareior P l 0

T [Fr i P I -

3 [y o T | s | -—

T [corvt. | e] -

5 o s e EETT W [

0) o | s [0 =
0 T P T W]
o [Fomrnn FEEECI T G |
5 [e [| o0 |

3.2. Process Plan

The project has been divided into three stages. The first stage is the specifications of the project. Then coding and testing will be combined for the second stage. Finally, stage three will be the delivery of the system. These stages represent the evolutionary prototyping lifecycle model. This model best fits the demands of our project because of its ability to support change. If any changes occur with the hardware we can easily code and test another prototype, without changing other areas of the project.

3.2.1. Specification

During the specification stage of development, the specifications of the project are to be explicitly defined based on client requests and requirements. The definition stage will ultimately end with initial completed versions of a Requirements Analysis Document (RAD), and the Project Plan document. The RAD defines the requirements and specifications of the project as analyzed by the development team. The project plan clearly documents each stage of project development including milestones and deadlines, as well as the actions to be taken in specified situations.

3.2.2. Programming

The programming phase of development will take the designed software architecture and implement it as useable code. There will be a separate class for each part of the hardware the system must interact with. All of the classes will be tested first. Each individual function will be thoroughly tested to make sure that it is operating successfully. After the classes are complete and the code is reliable, we will begin programming one module at a time. A module will consist of combining multiple classes to perform the correct operation. After a module is programmed it will then undergo testing. If a module does not meat the specification requirements in testing, then the testing will be considered a failure. The module will then undergo programming and again sent to testing.

3.2.2.1. Testing

During this phase of the project, the robot hardware and software will be tested. Initially, testing will be carried out in conjunction with programming, in order to evaluate the performance of each module and thread. The operating system will handle most of the coding for the threads. However, we do have to specify to the operating system which thread is being used and the correct parameters. To ensure satisfactory completion of each stage the module will be tested approximately ten times to completion. If at any point the execution shows bad results the test will be marked as a failure. A 1000% satisfaction rating in this early
testing stage is required to move the module on to the next stage. If the module provides unsatisfactory results, it will be returned to the programming phase for correction. Each module will also move back and forth between testing and programming to ensure that it is of the highest performance possible even after the satisfaction rating is reached. By doing this, the team hopes to be able to achieve a 100% satisfaction rating on all software modules by the final track test. All tests will be documented using Microsoft Excel to record the results and the values of the software constants for each run, and the software which provided the best overall repeated performance will be combined with the other threads, and tested again. Software will shift between programming, modular testing, and integration testing until the group is satisfied that they have achieved the highest possible performance from the robot. For details on the testing process refer to section 4.

3.2.3. Delivery

The final stage of the project is the delivery. During the delivery stage, the robot will ultimately participate in the 2006 IEEE Region 5 Technical Conference Robotics Competition in Houston, Texas. The group must complete all testing by the beginning of this stage in order to ensure a successful project.

3.3. Organization Plan

3.3.1. Analysis

The responsibilities related to analysis include review of the IEEE Region 5 Rules and Regulations, communication with client about requirements, and formation of a Requirements Analysis Document. The RAD will need to be updated as new requirements are brought forth. New requirements can originate from the client or updates to the IEEE Region 5 Rules and Regulations. The Computer Science students will split responsibilities for this area fifty-fifty, while receiving as much input from the Electrical Engineering students as possible.

3.3.2. Design

3.3.2.1. Hardware

The responsibilities related to hardware design include selection of all hardware components based on the analysis stated in the RAD. This consists of choosing off the shelf components such as the controller, motors, and front wheels; as well as choosing materials and structure for custom-built components such as the robot base, sensors, rear wheel, and claw mechanism. The decisions concerning hardware will be equally split between the three members of the ECE group.

3.3.2.2. Software

The responsibilities related to the software design include creation of a modular architecture and selection of algorithms based on data gathered and noted in the RAD. Another responsibility is the creation and maintenance of the Design Document. The Computer Science students will split the responsibilities related to software design, and will receive limited input from the Electrical Engineering students.

3.3.3. Programming

The programming portion of the project will entail writing and documenting the code as stated in the Design Document. Both Computer Science students will be expected to review any code written to check for logic errors before it will be allowed to advance to the testing phase. All code will be commented in a clear and concise manner. The Computer Science students will equally divide the programming responsibilities between them. Initially, Jason Abbett will have the responsibility of programming the drive motor, light sensor, and camera modules. Devon Berry will be responsible for the claw, sensors, and mouse modules. Both will work together to implement the threading. These responsibilities may change if one student completes their work early, or has difficulties completing their threads.

3.3.4. Testing

There are several testing responsibilities, including choosing and obtaining components of a test track, developing test specifications for the robot, executing the tests, and documenting the results of the tests. Any decisions regarding the test track must be documented in the Design Document. Again, the Computer Science students will split document responsibilities evenly. During module testing each student will test the threads they did not program and document the results. During integration and track testing, both students will perform the testing as a group and record results for each individual run. All members of the group will have equal input on all other aspects of the testing. More details will be discussed in part 4.

3.3.5. Staff

Several other miscellaneous tasks will need to be completed throughout the duration of the project: document assembly, website development and maintenance, and presentation material creation. The group has decided that Jason Abbett will assemble all documents and logs created, while Devon Berry acts as webmaster. All presentation materials will be worked on as a group, with both members receiving equal input.

3.4. Test Plan

The test plan describes the detailed testing procedures for programmed modules and threads of the robot, integration of the programmed modules, and the testing of the completed robot on a mock-up of the competition track.

3.4.1. Class Tests

Class tests will include testing the individual classes required for robot operation and control, and the hardware each class controls. The thread for this class will also be tested with the operating system.

3.4.1.1. Objectives

The class test is designed to ensure the expected result is received from each function given a specified input.

3.4.1.2. Procedures

Each class will be tested independent of the other classes using test data. Given a specific input, the class functions are executed with that input, and the output is monitored both on the LCD display, and in the hardware response. This will be performed for all common inputs and selected extreme inputs on each class function. If any of the outputs differ from the expected results, the class will be sent back to the programming stage. For the motor class we will test each function and send the motors different inputs. The signal being received by the motors will appear on the screen of the XRC. The tires should also rotate depending on the signal. Each function will be tested in this manner.

3.4.2. Integration Tests

Integration testing will assess the modules and threads additively, both on and off the track. The threads and their modules will be tested in the following order:

Line following

Line following + Collision detection

Line following + Collision detection + Claw operation

For the line following test, we will use electrical tape on a plain white cardboard. First the black line will just be straight. If the robot passes this test, we will add turns. After completion of this test we will then add curves and circles to the line. This will test every possibility that can occur at the competition according to the rules and regulations. The next phase will be the line following and collision detection. Using the same pieces of cardboard, we will set up obstacles imitating walls. Some of the walls will be placed where they cannot be avoided. This is done so we can test the collision detection. After the robot hits a wall it will have to find its way back to the black line. For the final test we will have cans placed out on the cardboard with the black lines. The robot must be able to locate the cans and determine its color. First we will only
use one can. After each successful run we will increase the number of can until there are four. If the robot can successfully locate and distinguish all four cans, we will then and action figures to the course. The action figures will be place close to the can and the robot will need to distinguish between the can and figure. We will test this up to three action figures, which is the maximum number that will be on the competition course.

3.4.2.1. Objectives

Integration testing ensures modules interact properly and data flow follows the designed path. This includes proper execution and switching of thread processes within the robot controller. Ensure the integrated module combination with the physical robot produces the correct responses.

3.4.2.2. Procedures

All modules will be combined into the completed and compiled program in a specific order. The given modules and threads will be tested in this combined state to ensure that given specific input, each module properly executes and produces the final expected outcome and properly passes control or data to the next thread. This will be performed for all common inputs and selected extreme inputs on each combination of modules. After each input is tested at least ten times and the produced result matches the expected results, the compiled code is then integrated with next module and re-tested. During this stage, should any test fail, the code is sent back to the programming stage. After the code is fixed, the modified modules must be re-tested individually before integration testing is performed again. After all inputs yield the desired action with all modules and threads combined, the robot is ready for track testing.

3.4.3. Track test

The track test ensures the complete robot can traverse a replica of
the sample course without interaction from a group member. To do this, we will use a complete model of the competition track.

3.4.3.1. Objectives

Ensure that during autonomous execution the robot behaves as expected and performs as specified in the RAD. This test is most important, as any failure here indicates a highly possible failure during the delivery phase.

3.4.3.2. Procedures

Following the competition rules as specified in the Requirements Analysis Document, the robot is tested autonomously, with no human interaction, on a complete mock-up of a competition track layout, including all symbols, and path changes. Any failures during this phase are crucial. All errors return to the programming phase for correction, as all design issues should be solved by this testing stage. This test will be run until the group members are completely satisfied with the execution of the project and prepared to deliver the final results.

3.5. Change Management Plan

3.5.1. Baselines

The baseline for our project will come from the documents generated by our group, specifically, the Requirements Analysis Document and the Design Document.

3.5.2. Proposing a Change

Any member of the group, upper management, or the client may propose a change. Modifications in the IEEE Region 6 Rules and Regulations may also initiate a change to the system.

3.5.3. Investigating A Proposal

The team will have an initial discussion concerning any proposed change. If necessary, a plan will be developed to research or test the impacts of the change on the system. After any required information is gathered, the group will meet again to decide if the change should be implemented. This will be done by a simple vote, with the client or upper management being consulted in the event of a tie.

3.5.4. Risks Requiring Project Changes

· Hardware Changes - The engineering team could require a change in the robot’s hardware. This could affect the entire project in a dramatic way.

· Incomplete Hardware - The engineering team could be unable to complete a working robot. This would effectively end the project.

· Interface Changes - The interface or language required to program the robot could be changed. This could severely affect the project.

· Design Changes - The basic artificial intelligence design could be altered. Depending on how far the project has progressed, this could affect the entire project in a negligible to dramatic way.

· Code Changes – The implementation within design modules could be changed. This should have little effect on the rest of the project.

3.5.5. Required Changes to Correct Risks

· Hardware changes – This shall require increased time spent to understand and alter the system to work with the changes. To reduce the time required to understand the changes, regular communication with the engineering team will be required. Team members shall try to meet with the engineering team on a regular basis.

· Incomplete Hardware – Unless our team can complete the hardware, (unlikely for CS students) there is no foreseeable way to correct this problem. Not much can be done to prevent this, as it is not our responsibility. Regular communication with the engineering team shall allow us to monitor their progress, but if they fall behind, all we can do is offer to help with what we can.

· Interface Changes – Some time shall be required to understand how to use the new interface and converting the code if it requires a new language. To prevent this, it is important to make sure which language and interface shall properly support the implementation.

· Design Changes – Any code for modules which are no longer used in the new system shall have to be thrown out. Many other modules may have to undergo significant alterations to meet the change. Much time could be needed depending on how much needs to be changed. To prevent this, a design must be agreed upon and must be checked to be sure it is the proper design to completely implement the project according to the requirements.

· Code Changes – Any code which is no longer necessary will have to be discarded. The rest of the code for the module shall need to be appended and changed. Since these changes occur within modules, the changes shall stay within the modules and shall not require changes to the rest of the project. Unless the module is very large, only a small amount of time shall be required to fix this problem. It may be difficult to prevent this since the code is not created yet, but the best method would be to plan out the implementation of the code before writing it. However, for some modules, this could take more time than correcting the errors themselves. Thus, this method shall be used on large modules only.

3.5.6. Implementing a Change

To implement a change, it may be necessary to re-evaluate the design of the project. If this change is due to a change in hardware, it shall be necessary to find out how the hardware change will affect the current system. If the change requires hardware changes, it shall be necessary to get approval from the engineering team.

3.6. Documentation Plan

3.6.1. Objective

The objective of this section is to outline a basic set of project documents.

3.6.2. Discussion

The documents which shall be written will be outlined by Dr. Waxman. All documents shall be submitted to Dr. Waxman. (This is one of them...) They shall be written partly by each member of the group.

3.6.3. Detail

3.6.3.1. Publication Procedures and Responsibilities

The responsibility of writing the documents shall be divided up between both team members. It shall ultimately be a team decision, but this shall usually be dividing the document into two even (approximately) halves. Upon completion of the halves, the team shall meet again to compile and error-check the document.

3.6.3.2. Project Document Outlines

Dr. Waxman will usually provide document outlines, but if he does not, the outlines and format shall be decided upon before the responsibility of writing the document is divided between the members. This shall help in the compilation of the entire document. Sections in the outlines may be added or removed as needed, but the basic structure of the outline should remain for easy compilation.

3.6.3.3. Document Contents

Dr. Waxman shall provide the requirements for the contents of the documents. These requirements shall be followed as much as possible.

3.7. Training Plan

3.7.1. Objective

The objective of this section is to define the training that shall be necessary to complete the project.

3.7.2. Discussion

Since the team members are the only ones which shall be operating the project, no training is necessary aside from learning the software and hardware used to control the robot. The learning shall occur throughout the project.

3.7.3. Detail

3.7.3.1. Internal Training

Time must be spent for the team members to learn how to write, compile, and upload code to the robot and how to use eCos threading. Some time must also be spent to learn how to activate and calibrate the robot for the tournament. Manuals, experimentation, and knowledgeable people shall be used for reference. This learning will take place as needed during the implementation and testing of the project.

3.7.3.2. External Training

No external training shall be required for the project. Clients wishing to operate the project after completion shall have to use manuals and other documentation for training.

3.8. Review and Reporting Plan

3.8.1. Objective

The objective of this section is to describe the means of reviewing and reporting progress.
3.8.2. Discussion

The reports which shall be written will be outlined by Dr. Waxman. All reports shall be submitted to Dr. Waxman. They shall be written partly by each member of the group.

3.8.3. Detail

3.8.3.1. Reviews

Team members shall get together weekly to determine what is the status of the project.

3.8.3.2. Reports

3.8.3.2.1. Time Logs

Time logs, which contain the total amount of time worked each week, shall be created by both members. Whichever member completes their log first shall send it to the other for compilation and submission to Dr. Waxman.

3.8.3.2.2. Status Reports

These reports shall contain the current status of the project. They shall detail which parts of the project are working and which are not. These reports shall be submitted to Dr. Waxman for analysis.

3.9. Installation and Operation Plan

3.9.1. Objective

The objective of this section is to define the client’s responsibilities for installing and operating the accepted software system.

3.9.2. Discussion

Since no contact is required between the client and the system, the client shall have no responsibility to install or operate the system until after the tournament is over.

3.9.3. Detail

3.9.3.1. Installation

The system shall be installed completely by the team, so the client shall only have to install the system if it has been removed after the tournament is over. Documentation shall be provided to aid in the re-installation should this occur.

3.9.3.2. Operation

The system shall be operated completely by the team, so the client shall only have to operate the system after the tournament is over. Documentation shall be provided to aid in the operation of the system.

3.10. Resources and Deliverables Plan

3.10.1. Objective

The objective of this section is to gather in one place a summary of all resource estimates.

3.10.2. Discussion

The resources required by this project are similar to the requirements of most software projects, with the exception of the hardware required to run the robot.

3.10.3. Detail

3.10.3.1. Manpower

72 man-hours are expected to be used on the project each month. These hours are spent by skilled Computer Science programmers.

3.10.3.2. Computer Resources

A windows based computer shall be required to accompany each man-hour during the project. Often it shall be required to have access to the Internet or to have a serial port to access the Xport Robot Controller.

3.10.3.3. Other Resources

A working robot shall be required for implementation and testing. An Xport Robot Controller shall be required to store the program and execute it. A special serial link cable shall be required to upload the program to the Xport Robot Controller.

3.10.3.4. Required Software

No software shall have to be purchased, but several programs shall have to be downloaded. All of these programs listed below can be found at www.charmedlabs.com in the downloads section.

3.10.3.4.1. Cygwin

Cygwin is a Linux-like environment for Windows. It shall be required to run the Xport Development Kit. It uses commands such as ls, cd, and make.

3.10.3.4.2. Xport Development Kit

The Xport DK software includes the GCC toolchain, Insight debugger, programming examples, documentation, and the Xport Logic Library. These tools shall allow us to upload code to the Xport Robot Controller. Cygwin must be installed before this can be installed. It adds a number of commands, including the upload command, to Cygwin. This command is usually contained within the makefile and executed with the make command. It uses standard C++ code, but any include files must be referenced starting from the makefile’s current location. For example, to include “math.h” you must find and copy the math.h file to your program’s directory or include the path to math.h from the program’s folder. If math.h was two folders up from your program’s folder, you would include “../../math.h.” (The “..” notation means “go up one folder.”)
3.10.3.4.3. Xport eCos

eCos is a powerful, open-source, real-time operating system for embedded applications. It shall allow us to easily integrate multi-threading and interrupts into our program without a lot of work. It also has a very small memory footprint, (~30K) so it should be able to fit in the Xport Robot Controller’s memory with our program.
3.11. Project Status

3.11.1. Objective

The objective of this section is to determine the current status of the project.

3.11.2. Discussion

While significant progress has been made by the engineering team, we have not made much headway. We have a good understanding of how to write the code, but we have not done much planning nor have we written much code.

3.11.3. Detail

3.11.3.1. Software

A basic design for the modules has been drawn up, but it has not been finalized and details have not been discussed. Custom code has successfully been written, complied, and uploaded to the Xport Robot Controller. We have been able to successfully run the motors using the example code provided by Michael Hall. We shall be able to adjust this code to move the robot wherever we want it to go. We have not yet experimented with moving the test servo, but it should be similar to the running the motors. We have not yet tried to obtain values from any sensors, but using Michael examples should make it easy to figure out. We have not figured out how to use the threading or interrupt features of eCos yet. No actual navigational algorithms or artificial intelligence code has been written yet.

3.11.3.2. Hardware

The robot’s motors have been integrated and can move the robot. The servos to move various parts on the robot are not yet working, but a single test servo can be moved successfully. The compass is working, but it has not been integrated with the robot yet, but this shall happen soon. The verilog code for the sonar is still being worked on. The mouse is working, but hasn’t been integrated yet. The CMUcamera can take pictures, but it does so very slowly. (1 every 3 seconds) It also doesn’t capture blue very well and thus, the picture looks yellowish. Corrections to these problems are being researched.

4. Member Contributions

Jason Abbett – Wrote the first half of the requirements analysis document, from the introduction to 1.3.3.4, wrote the software sections of the design document, sections 2.1, (except section 2.1.2.1) 2.3, 2.4, and 2.5, and wrote the first half of the plan document, up to section 3.5.3.
Devon Berry – Wrote the second half of the requirements analysis document, starting from 1.3.3.5, wrote the hardware sections of the design document, section 2.1.2.1, section 2.2, and section 2.6, wrote the second half of the plan document, starting from section 3.5.4, and wrote this section.
Both – Title page, Table of Contents, and proofreading.
Main()

Contains the main loop, the line following algorithm, and calls to other functions. It controls navigation between rooms and calls other functions upon leaving the line.

Locate()

Called upon entering an incoming room. It finds the can and moves the robot within grabbing range. Then it calls grab().

Grab()

Called upon locating and moving to a can. It uses the manipulator to grab and lift the can. Then it calls exit().

Drop()

Called upon entering an outgoing room. It makes sure it is within the black circle and then places the can on the floor. Then it calls exit().

Recover()

Called upon losing track of the line or circle. It uses other sensory readings, such as the mouse, compass, sonar, and camera, to find its way back to the line.

Exit()

Called when the robot is finished with a particular room. It finds the way back to the line at the entrance of the room. Then it returns to main()

Figure 5: Fall 2005 Schedule

Figure 6: Spring 2006 Schedule

Figure 7: Evolutionary Prototyping Model

